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Molecules within cells are segregated into functional domains to form various organelles. While some of those organelles are
delimited by lipid membranes demarcating their constituents, others lack a membrane enclosure. Recently, liquid-liquid
phase separation (LLPS) revolutionized our view of how segregation of macromolecules can produce membraneless organelles.
While the concept of LLPS has been well studied in the areas of soft matter physics and polymer chemistry, its significance
has only recently been recognized in the field of biology. It occurs typically between macromolecules that have multivalent
interactions. Interestingly, these features are present in many molecules that exert key functions within neurons. In this
review, we cover recent topics of LLPS in different contexts of neuronal physiology and pathology.
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Introduction
A neuron has a highly polarized and compartmentalized struc-
ture, which requires precise localization of various cellular com-
ponents. Molecules synthesized in the cell body must travel
long distances to reach their final destination. Upon reaching
their destination, the molecules must be retained in an appro-
priate concentration relative to other factors. Additionally, the
molecules may need to be segregated from their immediate
environment, to establish a functional domain. Anomalies in
this process can lead to pathologic outcomes in the brain.

Compartmentalization of molecular processes is accom-
plished by various intracellular organelles that spatially segre-
gate functionally related molecules. Major organelles, such as
the nucleus, endoplasmic reticulum, mitochondria, lysosome,
endosome, etc., have demarcating membranes. In contrast,
there are organelles that lack any demarcating membrane.
These include the nucleoli, chromosomes, ribosomes, centro-
somes, RNA granules, and stress granules. How such organelles
maintain their constituent molecules was mostly overlooked in
early studies using static images. However, a live-imaging study

of P granules, cytosolic protein granules found in germline cells
of Caenorhabditis elegans, revealed that these granules have liq-
uid-like properties, including fusion, fission events, changes in
size, and reversibility (Brangwynne et al., 2009). At the same
time, the molecules undergo constant exchange between the
external environment, or dilute phase, and the condensed
phase. This exchange was demonstrated by the photobleaching
of fluorescently labeled molecules (Brangwynne et al., 2009).
These observations required us to rethink how membraneless
organelles maintain their shape and constituents.

Subsequently, it was demonstrated that biological macromo-
lecules, including proteins and nucleic acids, can condense and
self-assemble into protein droplets in vitro (Kato et al., 2012; Li
et al., 2012). Inside the condensate, the molecule can be enriched
hundreds of folds compared with the original concentration in
the cellular milieu (Zeng et al., 2018). In the simplest scenario,
the molecules segregate from the solvent because they can exist
more stably in a condensed phase than in a diluted phase, similar
to the formation of oil droplets in a water-enriched environment.
This phenomenon is called liquid-liquid phase separation (LLPS)
because both diluted and condensed phases still retain properties
as liquid (Hyman et al., 2014; Banani et al., 2017).

Importantly, the proteins condensed by the mechanism of
LLPS still retain native physiological conformation and functions
while undergoing exchange between the dilute and condensed
phases. This is unlike more solid protein aggregates where the
constituent proteins can be misfolded and immobile. However,
LLPS can trigger the aggregation of proteins localized to the con-
densed phase (Hyman et al., 2014; Banani et al., 2017).

LLPS elucidates a wide variety of cellular functions, such as
transcriptional and translational regulation, metabolism and ca-
tabolism, signal transduction, and cellular motility. It is possible
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that many reported protein-protein interactions mediating these
cellular functions are actually part of a larger protein interaction
network underlying LLPS. In this review, we discuss the role of
LLPS in neurons, with a focus on local protein synthesis, synaptic
organization, and neurodegenerative disease.

Biophysics behind LLPS
LLPS has been well studied in the field of soft-matter physics, but
biologists have only recently discovered its importance and
implications in divergent cellular functions (Hyman et al., 2014;
Banani et al., 2017). The governing mechanism for forming
phase-separated condensates in biological systems is multivalent
interactions (Li et al., 2012; Banani et al., 2017; Chen et al., 2020).
Such interactions can occur between molecules with multiple
pairs of specific interactions (e.g., between multidomain scaffold
proteins and their binding partners). An increase in multivalency
lowers the critical protein concentration required for phase sepa-
ration (Li et al., 2012). Multivalent interactions can also occur
among proteins with intrinsically disordered regions, a region of
protein without any fixed conformation or domain structure, or
with various RNA species. Intrinsically disordered regions are of-
ten composed of low-complexity amino acids that are rich in
hydrophilic residues (serine, glutamine, glutamate, arginine, and
lysine) and that can form electrostatic interactions. Aromatic resi-
dues, such as phenylalanine, tyrosine, and tryptophan, are stacked
on each other to form p electron cloud (p -p interaction) or
interact with positively charged residues via cation-p interactions.
In contrast, aliphatic residues, such as valine, leucine, and isoleu-
cine, are less frequently observed in low-complexity domains.
Both protein-domain interactions and electrostatic interactions in
the intrinsically disordered region contribute to the formation of
condensed molecular assemblies with specific and distinct biologi-
cal functions via phase separation.

In a simple two-molecule system, such as a protein in water,
the phase behavior of the solution can be characterized by the
free energy diagram (Fig. 1A) and the corresponding phase dia-
gram (Fig. 1B). Under conditions relevant to living cells, most
proteins in water form a homogeneous one-phase solution
because of the tendency of the mixture to increase its entropy
(Fig. 1C). However, on self-interaction, the protein may undergo
LLPS, leading to two distinct phases: a highly condensed phase
and a dilute phase (Fig. 1C). In the two-phase mixture, there is
no free energy difference between the condensed and the dilute
phases. The diffusion chemical potential (m) of the protein gener-
ated by the concentration gradient between the two phases is off-
set by the net free energy gain (DDG) of increased binding
between protein molecules in the condensed phase because of its
higher concentration (i.e., m = DDG). Thus, the phase-separated
liquid solution is at a thermodynamic equilibrium. Nonetheless,
protein molecules in the condensed phase can freely exchange
with molecules in the dilute phase (Fig. 1D).

The free-energy state of a two-component mixture at any spe-
cific condition within the phase separation zone (pale blue and
blue regions in Fig. 1B; see the corresponding free energy states
of the regions in Fig. 1A) dictates that the system will spontane-
ously reach to two local minima, corresponding to Ud and Uc.
Depending on the free energy state, phase separation can occur
via binodal nucleation (formation of condensed phase requiring
a nucleation processes) or spinodal decomposition (rapid and
spontaneous phase separation without nucleation) (Fig. 1E). In
a membrane-sealed compartment, exchange of molecules
within and outside of the compartment needs to go through the
membrane bilayer and requires energy (Fig. 1F). Thus,

membraneless organelles are radically different from mem-
brane-based organelles.

Because of the complexity of interactions between biological
macromolecules, more than two condensates of different composi-
tion can form at the same time in the same cellular compartment.
They can form independently of each other (phase-to-phase) or
one condensate can form inside of another condensate (phase-in-
phase) (Kato et al., 2012; Quiroz et al., 2020; Hosokawa et al.,
2021). This might account for subdomains observed in somemem-
braneless organelles, such as core-shell architecture of nucleoli,
stress granules, and P granules (Kato et al., 2012).

To observe LLPS in vitro, proteins of interest are purified, flu-
orescently labeled, mixed, and observed by diffusion interference
contrast microscopy or fluorescence microscopy (Fig. 1E).
Photobleaching of a single fluorescent droplet or part of a fluo-
rescent droplet enables measurements of protein movement
within the droplet as well as protein in exchange with diluted
phase (Feng et al., 2019). These studies enable researchers to
understand how protein components regulate LLPS in vitro;
however, it is important to reproduce in vitro studies in the living
cell.

LLPS and local protein synthesis
Membraneless organelles control gene expression, from tran-
scription in the nucleus to local protein synthesis in distal proc-
esses (Martin and Ephrussi, 2009; Hnisz et al., 2017; Langdon
and Gladfelter, 2018). These organelles circumvent the need for
active transport of macromolecules across a membrane, enabling
rapid signal transduction. While many of the membraneless or-
ganelles involved in gene expression share the biophysical trait of
LLPS, each organelle is distinct in its molecular composition and
function. Here, we focus on neuronal mRNA-containing ribonu-
cleoprotein (mRNP) granules.

Proteins and mRNAs within neuronal mRNP granules can be
dendritically localized (Kiebler and Bassell, 2006), where their
translation can be regulated at synapses (Knowles et al., 1996;
Kohrmann et al., 1999; Krichevsky and Kosik, 2001; Mallardo et
al., 2003; Kanai et al., 2004) (Fig. 2). Retrograde and anterograde
transport of these granules is microtubule-dependent (Knowles
et al., 1996; Kohrmann et al., 1999). The movement of mRNAs
to specific distal sites is necessary for synaptic plasticity and the
strengthening of neuronal connections, a critical component of
cognitive processes, such as long-term memory (Richter and
Lorenz, 2002; Klann and Dever, 2004).

LLPS of components of neuronal mRNP granules plays essen-
tial roles in mRNA trafficking and local protein synthesis
(Fig. 2). Work from the Kandel and Lu.F. laboratories posits
a link between LLPS of cytoplasmic polyadenylation element
binding protein 3 (CPEB3) in trafficking dendrite-bound
mRNAs that contain cytoplasmic polyadenylation elements
(CPEs) (Ford et al., 2019). Indeed, neuronal mRNP granules
concentrate a large amount of CPE-containing mRNAs,
including CaMKIIa (Huang et al., 2003; Martin, 2004). The
CPEs promote cytoplasmic polyadenylation-induced transla-
tion of the mRNAs in response to synaptic stimulation, such
as NMDA-dependent LTP (Gu et al., 1999; Huang et al.,
2006; Fioriti et al., 2015). Kandel and Lu.F. have shown that
CPEB3 binds CPEs of dendrite-bound mRNAs, providing
translational regulation that is necessary for memory persist-
ence (Fioriti et al., 2015). Additionally, they found that
CPEB3 undergoes LLPS when bound to its target mRNA and
is SUMOylated (Ford et al., 2019), suggesting that LLPS plays
a role in translation regulation. Indeed, CPEB3 leaves the
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membraneless Processing Body (P body) to join the distally
located polysome after chemically induced LTP (Ford et al.,
2019). This work identifies the movement of phase separated,
translation-dependent components from a repressed state in
neuronal mRNP granule-like P bodies (Barbee et al., 2006) to
an active state at distal ribosomes, and suggests that P bodies
are playing an essential role in this process (Cougot et al.,
2008; Ford et al., 2019).

Fragile X Mental Retardation Protein (FMRP) is another
well-characterized component of neuronal mRNP granules,
largely studied for its role in the pathogenesis of fragile X syn-
drome, the most commonly inherited form of mental retardation

(Jin and Warren, 2003). Disruption of FMRP results in altered
neural morphology in the form of excessively long and thin filo-
podia-like spines and fewer mature spines (Nimchinsky et al.,
2001). FMRP is localized to the synapse on metabotropic glu-
tamate receptor activation, where it functions to target dendri-
tic mRNAs and regulates translation (Jin and Warren, 2003;
Antar et al., 2004). FMRP represses mRNA translation both in
vivo and in vitro, possibly by blocking ribosome elongation at
the polysome (Zalfa et al., 2006) and/or by miRNA-FMRP
interaction, which would repress translation via the RNA-
induced silencing complex (Zalfa et al., 2006). Experiments
conducted in vitro using reticulocytes extracts and recombinant

Figure 1. Phase separation illustrated by a simple two-component system. A, Free energy diagram showing phase separation of a two-component system (e.g., a protein indicated by blue
dots; in water indicated by brown dots) under a certain condition. A uniformly mixed system can undergo phase separation by lowering the free energy to its minima, which results in a two-
phase system: a dilute phase (Ud, expressed as fraction volume for the dilute phase) and a condensed phase (Uc, fraction volume for the condensed phase). B, Phase diagram of the two-com-
ponent system constructed by plotting the free energy minima as a function of temperature. Blue curve indicates a sharp boundary (or the threshold concentration) of the system transitioning
from a homogeneous single-phase state to a two-phase state. Within the phase separation region, two modes of phase separation, binodal nucleation and spinodal decomposition, can occur.
C, In a phase-separated two-component system, a thermodynamic equilibrium is reached (i.e., DGd/c = 0). A sharp gradient in the concentration of the blue molecule is established between
the two phases. D, After phase separation, the components of the condensed phase and the diluted phase can freely exchange. However, there is no net flow of components between the two
phases. E, An example of binodal nucleation-induced phase separation forming condensed spherical droplets (left) and an example of spinodal decomposition-induced phase separation forming
worm-like condensed networks (right). F, In sharp contrast to membraneless condensates, spontaneous compartment fusion or materials exchange does not occur in membrane-separated
organelles.
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FMRP suggest that this translation repression likely occurs
within the LLPS state, since FMRP-containing droplets can
recruit translational repressors and miRNA (Tsang et al., 2019).
However, the same authors do not show direct evidence that
only the phase-separated state is capable of repressing transla-
tion in an intact cellular environment. Thus, additional studies
are necessary to clarify whether the ability to repress translation
is an exclusive property of the condensed phase. Interestingly,
FMRP LLPS is mediated by binding to its mRNA targets and by
post-translational modifications, such as phosphorylation
(Tsang et al., 2019). Tsang et al. (2019) predict that additional
RNA-binding proteins involved in translational repression
might undergo LLPS to function as translational repressors in
neurons.

mRNAs in neuronal mRNP granules can also drive LLPS and
direct dendritic targeting of mRNP granules. RNA modifies the
LLPS behavior of RNA-binding proteins (Maharana et al., 2018);
and the post-transcriptional state of the RNA, such as secondary
structure, also plays a role in changing LLPS behavior (Langdon
and Gladfelter, 2018; Van Treeck and Parker, 2018). Recently, the
Jaffery laboratory identified a facilitating role of methylation of
adenosine at the nitrogen-6 position (m6A) in LLPS in vitro, and
linked the high abundance of m6A RNA to LLPS of specific mem-
braneless organelles (Ries et al., 2019). Interestingly, transcripts
critical for synaptic organization and function are highly modified
with m6A and are translocated to synapse (Merkurjev et al., 2018).
Like the disrupted neuromorphology seen with FMRP mutations
(Nimchinsky et al., 2001; Tsang et al., 2019), reducing the levels of
the protein “m6A reader,” a protein that interacts with m6A-
modified mRNA, caused structural and functional deficits in hip-
pocampal dendritic spines (Merkurjev et al., 2018).

Local translation also takes place in axons (Jung et al., 2012;
Wong et al., 2017; Hafner et al., 2019). Similarly to the local pro-
tein synthesis in dendrites, RNA-binding proteins play a major
role in regulating axonal local translation (Antar et al., 2004;
Kiebler and Bassell, 2006). A coculture system of Aplysia sensory
presynaptic and motor postsynaptic neurons has been used for
studies of axonal local translation. After stimulation to induce
long-term facilitation, relevant mRNAs, such as sensorin, rapidly
concentrate in the presynaptic terminus of sensory neurons
(Lyles et al., 2006). Moreover, live-cell imaging of fluorescent
translational reporters revealed accumulation of newly synthe-
sized proteins in the presynaptic terminus (Wang et al., 2009),
suggesting that local translation occurs in the presynaptic termi-
nus during long-term facilitation.

As they are transported along axons to growth cones or pre-
synaptic structures, RNA-binding proteins and mRNAs form
mRNP granules through LLPS. Translation is suppressed in these
granules until they receive extracellular signals that initiate local
translation. FMRP, together with proteins, such as fragile X-
related 1 (FXR1) and FXR2, forms FMRP-containing granules
(FXGs) by LLPS, which plays an important role in the translation
control (Antar et al., 2006; Li et al., 2009; Till et al., 2011; Parvin
et al., 2019; Tsang et al., 2019). These granules are often localized
near synaptic vesicles (Christie et al., 2009), which may serve as
platforms for local translation at presynaptic structures. The syn-
aptic vesicle protein synapsin 1 condenses into liquid droplets
and promotes clustering of synaptic vesicles at presynaptic termi-
nals (Milovanovic et al., 2018). Because FXGs localize with syn-
aptic vesicles, it is possible that FMRP suppresses local
translation to maintain mRNAs and translational machinery at
the synapsin/synaptic vesicle condensate. Once a signal to initiate

Figure 2. RNA binding proteins are involved in RNA stability (P bodies), mRNA transport (mRNA transport granules), translation, and stress granules (SG) formation. Under transient stress,
protein-protein and RNA interactions form a dense SG core. Several RNA binding proteins can be recruited to SG cores and undergo LLPS forming functional dynamic structures (physiological
LLPS). Under conditions of transient stress, SGs are transiently formed but disassemble after the stress is gone. In case of prolonged stress, and after post-translational modifications, such as
phosphorylation, proteins can become insoluble (pathologic LLPS). The same RNA binding proteins can participate in the formation of nontoxic hydrophobic aggregates and toxic cytoplasmic
inclusions.
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translation for synapse formation or plasticity is
received, FMRP is dephosphorylated and FXGs
are dispersed to initiate translation. The sur-
rounding phase environment (synapsin/synap-
tic vesicles condensate) may affect the process
of forming/dispersing FXGs by LLPS. However,
further studies at higher resolution are neces-
sary to detect translating ribosomes and FXGs
in presynaptic structures in response to extrac-
ellular signals.

In summary, a multitude of nuclear and
cytoplasmic membraneless organelles play criti-
cal roles in gene expression and local protein
synthesis. The dense nature of these organelles,
with high concentrations of select protein and
RNA components, allow for “packets of infor-
mation” to be delivered directly to relevant
active sites. This allows for the efficient, and
spatially dependent, production of transcription
and translation products in the polarized
neuron.

LLPS at the synapse
Synaptic proteins are continuously turning over (Kuriu et al.,
2006; Sharma et al., 2006) and yet synapses can persist for weeks,
months, or even the lifetime of the animal (Grutzendler et al.,
2002; Yang et al., 2009; Isshiki et al., 2014). A presynaptic termi-
nus shows specific accumulation of component proteins, which
tether the synaptic vesicles at rest and, on the influx of Ca21, fuse
them with a specialized part of the presynaptic membrane called
the active zone. Postsynaptic receptors are embedded in the plasma
membrane, beneath which, various cellular components involved
in signal transduction and regulation are enriched and comprise
the postsynaptic density (PSD) (Sheng and Hoogenraad, 2007).
These presynaptic and postsynaptic structures lack any demarcating
membranes that prevent the diffusion of the component molecules
into the cytoplasm. Indeed, these properties of protein accumula-
tion are consistent with the phenomenon of LLPS (Fig. 3).

Synapsin is a presynaptic protein that crosslinks synaptic
vesicles and tethers them to the cytoskeleton within the resting
presynaptic terminus. Upon Ca21 entry, activated CaMKII
phosphorylates synapsin. This reduces the interaction of synap-
sin with synaptic vesicles and the cytoskeleton, and facilitates
the process of vesicular release. When purified, synapsin can
undergo LLPS in vitro in a manner recapitulating its in vivo
properties (Milovanovic et al., 2018). Synapsin condensates can
capture liposomes and are dispersed by CaMKII phosphorylation
(Milovanovic et al., 2018). From these observations, synapsin is
proposed to cluster synaptic vesicles in the presynaptic terminus by
a LLPS-mediated mechanism.

The clustering of membrane surface proteins can also be
regulated by LLPS of proteins that bind to intracellular regions of
membrane proteins. Ca21 comes into the presynaptic terminus
through voltage-gated Ca21 channels at the active zone of the
presynaptic membrane. The clustering of the voltage-gated Ca21

channels is mediated by two active zone proteins, Rab3-interact-
ing molecule (RIM) and RIM-Binding Protein (RIM-BP), which
interact with voltage-gated Ca21 channels. RIM has a proline-
rich domain and a PDZ domain, which interact with three SH3
domains in RIM-BP and with the PDZ binding motif of the N-
type voltage-gated Ca21 channels, respectively (Wu et al., 2019;
Wu, 2020). Through these multiple domain interactions, RIM,
RIM-BP, and voltage-gated Ca21 channels can phase separate

and form clusters at the active zone (Wu et al., 2019). Wu et al.
(2020) demonstrated that purified synaptic vesicles coat the
surface of the RIM/RIM-BP condensates either in solution or
tethered to membrane bilayers by the cytoplasmic tail of
voltage-gated Ca21 channels, forming a new type of interac-
tion between a membrane organelle and membraneless or-
ganelle. The coating of synaptic vesicles on the surface of
active zone condensates implies that the total number of syn-
aptic vesicles tethered to each active zone is determined by
its surface area (Schikorski and Stevens, 1997). Remarkably,
when the synapsin/vesicle condensates mixed with the vesi-
cle-coated RIM/RIM-BP condensates, the vesicle-coated
RIM/RIM-BP condensates are encapsulated by synapsin/
small unilamellar vesicle condensates, forming two distinct
small unilamellar vesicle pools reminiscent of the reserve
and tethered synaptic vesicle pools existing in presynaptic
boutons. Thus, the authors have reconstituted a presynaptic
bouton-like structure containing vesicle-coated active zone
with one side attached to the presynaptic membrane and the
other side connected to the synapsin-clustered synaptic vesi-
cle condensates.

Purified postsynaptic scaffolding proteins Shank and Homer
self-assemble into macromolecular complexes when they are
mixed together in vitro. Both Shank and Homer are multimeric
proteins, and Homer has Enabled/Vasp Homology domain that
interacts with Shank (Hayashi et al., 2009). Through this multi-
mer-multimer interaction, the protein complex takes on a high-
order meshwork structure and is the proposed underlying frame-
work of the PSD at the excitatory synapse (Hayashi et al., 2009).
Similarly, SynGAP, a postsynaptic Ras-activating protein, is a tri-
meric protein with a PDZ binding motif (Zeng et al., 2016).
PSD-95, a postsynaptic scaffolding protein, multimerizes in vitro
(Hsueh and Sheng, 1999; Zeng et al., 2018). When purified
SynGAP and PSD-95 are combined, they form a macromolecular
complex. Interestingly, the resultant complex has droplet-like
structures (Zeng et al., 2016). The properties of these droplets,
such as spontaneous formation, constant exchange between con-
densed and diluted phase, and spontaneous fusion, are consistent
with the idea that these droplets are formed by LLPS. The phase
separation of the PSD-95 and SynGAP mixture also suggests that
the dense PSD assemblies beneath, but not enclosed by the post-
synaptic plasma membranes, are formed via LLPS. A mutant

Figure 3. Schematic diagram LLPS at synapses. Synapses contain various unique biological condensates, such as
active zones and PSD. In a presynaptic bouton (light blue), the reserve pool of synaptic vesicles (SV) can form molec-
ular condensates via coacervating with the synapsin condensates. The docked pool of synaptic vesicles instead coats
the surface of active zone condensates formed by proteins, including RIM, RIM-BP, and ELKS. In the postsynaptic
neuron (purple) and both in excitatory and inhibitory synapses, formation of PSD assemblies may also involve phase
separation of synaptic scaffold proteins interacting with neurotransmitter receptors.
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that abolishes LLPS in vitro significantly impaired the enrich-
ment of these proteins in neurons (Hayashi et al., 2009; Zeng et
al., 2016).

When additional components of the PSD, including the
NMDAR subunit GluN2B (which has a PDZ binding motif),
GKAP (which bridges PSD-95 and Shank), Shank, and Homer
were added to a PSD-95/SynGAP mixture, this resulted in LLPS
at lower protein concentration, indicating a synergetic effect on
the phase formation (Zeng et al., 2018; Chen et al., 2020; Wu,
2020). However, the contribution of each protein to phase sepa-
rate is different. Removal of PSD-95 significantly reduced
GluN2B but not Shank and Homer. In contrast, removal of
Shank significantly reduced Homer but had less impact on
PSD-95 and SynGAP. This suggests that some proteins serve as
a “driver” for the formation of phase separation, whereas others
serve as a “client.” PSD-95 serves as a major driver of phase
separation, whereas GluN2B serves as a client. In contrast,
Homer and Shank form an independent layer that does not
serve as a driver or client for PSD-95/SynGAP/GluN2B. This
is consistent with electron microscopic observations of the
laminal structure of PSD (Valtschanoff and Weinberg, 2001),
where PSD-95 and GluN2B are layered together immediately
beneath the synaptic membrane, while Shank is in a deeper
layer. GKAP is an interesting molecule in this structure:
when it was removed, both PSD-95/SynGAP/GluN2B and
Shank/Homer had significantly reduced phase formation.
GKAP is situated between these two layers in the protein
complex and may serve as an interface. Indeed, in native
PSDs, GKAP is layered between PSD-95/GluN2B and Shank
(Valtschanoff and Weinberg, 2001).

AMPA-type glutamate receptors (AMPAR) are another
major receptor group of the excitatory synapse. They interact
with a myriad of proteins that regulate the synthesis, function,
and subcellular distribution of AMPAR. Major interactors
include the transmembrane AMPAR-interacting proteins,
which interact with the transmembrane domain of AMPARs
and determine receptor localization and function (Nicoll et
al., 2006). A prototypical transmembrane AMPAR-interacting
protein, Stargazin, can interact with PSD-95 through a PDZ-
binding motif, as well as through an arginine-rich motif (Zeng
et al., 2019). Through such multivalent interactions, Stargazin
undergoes LLPS with PSD-95. This is required for efficient
incorporation of AMPAR into the synapse.

The induction of synaptic plasticity can persistently alter the
amount of the AMPAR and various other proteins residing at
the synapse (Bosch et al., 2014). Thus, an important and out-
standing question is how neuronal activity modulates postsy-
naptic LLPS to trigger the delivery of synaptic proteins. The
induction of LTP induces a delivery of postsynaptic proteins
in a specific order from the dendritic shaft. Actin and actin-
related proteins are the first to arrive at the synapse, followed
by AMPAR. PSD scaffolding proteins, such as PSD-95 and
Homer, take longer to increase (;2 h) after LTP induction, and
require the synthesis of new protein (Bosch et al., 2014). In con-
trast, SynGAP, another PSD protein that inhibits Ras activity, dis-
sociates quickly from the synapse on phosphorylation by CaMKII
(Araki et al., 2015). Furthermore, phosphorylation of Stargazin by
CaMKII negatively affects LLPS (Zeng et al., 2019). Because activa-
tion of CaMKII transiently occurs after LTP induction (Lee et al.,
2009), this might create a time window for reorganization of the
postsynaptic protein condensate.

Indeed, CaMKII has several properties that enable it to
undergo LLPS. Once activated by Ca21/calmodulin, CaMKII can

form a persistent complex with substrate proteins, including the
intracellular carboxyl tail of the NMDAR subunit GluN2B, Rac
guanine nucleotide exchange factor Tiam1, GJD2/connexin 36,
LRRC7/densin-180, and the L-type Ca21 channel. In addition,
CaMKII has a rotationally symmetric dodecameric structure that
can simultaneously interact with these proteins and cross link
them. The ability of CaMKII to undergo LLPS was experimen-
tally demonstrated by using purified CaMKII and other PSD
proteins, including the scaffolding protein PSD-95, GluN2B, and
Stargazin as a proxy of AMPAR itself. Notably, CaMKII under-
goes phase separation with these proteins only in the presence
of Ca21; and after it undergoes LLPS, this state persists even af-
ter chelation of Ca21. This persistence of LLPS after Ca21 che-
lation requires phosphorylation of threonine 286 of CaMKII,
which has been shown to render CaMKII constitutively active.
Therefore, one major role of CaMKII at the synapse may be to
link different postsynaptic molecules through LLPS in a man-
ner triggered by Ca21 (Hosokawa et al., 2021).

In a related study, Cai et al. (2020) discovered that autoinhibited
CaMKIIa specifically binds to Shank3. In a reconstitution buffer
containing no Ca21, mixing CaMKIIa and Shank3 leads to phase
separation of the mixture. Addition of Ca21 induces GluN2B-medi-
ated recruitment of active CaMKIIa and formation of the GluN2B/
PSD-95/CaMKIIa condensates, which is autonomously dispersed
on Ca21 removal. Protein phosphatases control the Ca21-depend-
ent shuttling of CaMKIIa between the two PSD subcompart-
ments (the upper layer composed of GluN2B/PSD-95 and the
lower layer composed of GKAP/Shank3/Homer). Activation of
CaMKIIa further enlarges the PSD assembly, mimicking activ-
ity-induced structural LTP in synapse. Therefore, Ca21-driven
and phosphatase-checked shuttling of CaMKIIa between dis-
tinct PSD nanodomains may underlie structural plasticity of
PSD assemblies via LLPS (Cai et al., 2020).

LLPS of CaMKII is also involved in the segregation of synap-
tic surface proteins. Glutamate receptor subtypes are organized
into nanodomains at the synapse. In each hippocampal synapse,
NMDAR forms one dominant nanodomain and several small
domains, whereas AMPAR segregates into several nanodomains
of similar size surrounding the NMDAR. In contrast, metabo-
tropic glutamate receptors are more diffuse (Goncalves et al.,
2020). Postsynaptic nanodomains connect to the presynaptic
active zone via cell adhesion molecules, thereby forming trans-
synaptic nanocolumns (Tang et al., 2016; Biederer et al., 2017;
Scheefhals and MacGillavry, 2018). CaMKII preferentially inter-
acts with the NMDAR subunit GluN2B rather than the AMPAR,
represented by Stargazin. This leads to the formation of a phase-
in-phase structure of AMPARs within the NMDAR-CaMKII
phase. Further, the cell-adhesion molecule neuroligin segregates
with the AMPAR and connects the presynaptic neurexin with
the presynaptic release machinery. This mechanism may place
AMPARs just beneath the transmitter release site, thereby opti-
mizing the transmission efficacy and serving as a novel mecha-
nism CaMKII-mediated synaptic plasticity.

In contrast to prominent PSD assemblies in excitatory synap-
ses, inhibitory synapses do not contain obvious dense thickening
underneath synaptic membranes. However, recent cryo-EM to-
mography studies reveal a sheet-like dense assembly (referred
to as iPSD) with a thickness of ;5 nm (Tao et al., 2018). A
recent study has demonstrated that glycine or GABAA recep-
tors, together with gephyrin, a key scaffold protein in inhibi-
tory synapses, can undergo phase separation, forming iPSD
condensates. The formation of the iPSD condensates can be
regulated by phosphorylation of gephyrin or binding of
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target proteins to gephyrin (Bai et al., 2020). Thus, analogous
to excitatory PSDs, iPSDs are likely formed by phase separa-
tion-mediated condensation of scaffold protein/neurotrans-
mitter receptor complexes.

LLPS in neurodegenerative disease
Neurodegenerative diseases, such as Alzheimer’s disease and
Parkinson’s disease, are currently incurable and have no effective
treatments. To identify potential treatments, it is paramount
to understand the cellular and pathologic basis of disease.
One defining cellular feature of neurodegenerative disease is
the deposition of protein aggregates in affected brain regions.
Protein aggregates in a given disease are formed by a specific
protein, for example, the microtube-associated protein tau in
Alzheimer’s disease and 50% of patients with frontotemporal
degeneration (Mackenzie and Neumann, 2016; Vogels et al.,
2020); a-synuclein in Parkinson’s disease and Lewy body de-
mentia (Luna and Luk, 2015; Zbinden et al., 2020); and TDP-
43 in .95% of patients with amyotrophic lateral sclerosis
(ALS) and in;45% of patients with frontotemporal degener-
ation (Mackenzie and Neumann, 2016; Taylor et al., 2016).
Microtube-associated protein tau, a-synuclein, and TDP-43
have an inherent capacity to aggregate; they harbor disease-
causing mutations, and the anatomic burden of these protein
aggregates correlates with symptomatic decline (Luna and
Luk, 2015; Mackenzie and Neumann, 2016; Taylor et al.,
2016; Harrison and Shorter, 2017; Vogels et al., 2020;
Zbinden et al., 2020). How protein aggregates correlate with
disease is unclear, but it is emerging that LLPS may be
involved. Here we focus on the role of LLPS in ALS.

ALS is an incurable motor neuron disease that leads to paraly-
sis and death within 2-5 years of symptomatic onset (Taylor et
al., 2016). In .95% of ALS patients, TDP-43 forms phosphoryl-
ated protein aggregates in the cytoplasm of affected motor neu-
rons (Arai et al., 2006; Neumann et al., 2006). Mutations in
several ALS-linked genes have been identified, and these give rise
to;15% of ALS cases (Taylor et al., 2016). Many of the mutated
genes, including TDP-43, FUS, and TIA1, are RNA-binding pro-
teins that harbor a prion-like domain (Sreedharan et al., 2008;
Kwiatkowski et al., 2009; Vance et al., 2009; Kim et al., 2013;
Mackenzie et al., 2017). The prion-like domain is an intrinsically
disordered region that can promote protein aggregation and pro-
tein phase separation both in vitro and in the cell (Johnson et al.,
2009; Sun et al., 2011; Han et al., 2012; Kato et al., 2012; Lin et
al., 2015; Molliex et al., 2015; Murakami et al., 2015; Patel et al.,
2015; Xiang et al., 2015; Conicella et al., 2016, 2020; McGurk et
al., 2018a,b; Ryan et al., 2018; Murthy et al., 2019); and it is often
the site of disease-causing mutations (Sreedharan et al., 2008;
Kwiatkowski et al., 2009; Vance et al., 2009; Kim et al., 2013;
Mackenzie et al., 2017). Thus, LLPS is a focus in the underlying
pathogenesis of ALS.

In ALS, neurons are under constitutive stress that can arise
from misfolded proteins in the endoplasmic reticulum and mito-
chondrial dysfunction (Kiskinis et al., 2014; Montibeller and de
Belleroche, 2018). As a survival mechanism during stress, the cell
inhibits global protein translation by sequestering RNA-protein
complexes involved in the pre-initiation of protein synthesis into
stress granules (Ivanov et al., 2019; Jaud et al., 2020). TDP-43
and several of the RNA-binding proteins linked to ALS localize
to stress granules (Bosco et al., 2010; Dewey et al., 2011;
Mackenzie et al., 2017; Fernandes et al., 2018). The hypothesis
that stress granules are linked to ALS is further supported by evi-
dence that demonstrates that disease-causing mutations in the

RNA-binding proteins linked to ALS alter LLPS in vitro and
localization of the respective proteins to stress granules (Lin et
al., 2015, 2016; Molliex et al., 2015; Murakami et al., 2015; Patel
et al., 2015; Conicella et al., 2016; Lee et al., 2016; Boeynaems et
al., 2017; Dao et al., 2018; Wang et al., 2018; McGurk et al.,
2018b); that downregulation of pathways that promote stress
granule formation mitigate TDP-43-associated toxicity and/or
aggregation in various cellular and animal models (Elden et al.,
2010; Kim et al., 2014; Becker et al., 2017; Zhang et al., 2018;
McGurk et al., 2018c; Duan et al., 2019; Fernandes et al., 2020);
and that stress-granule resident proteins coaggregate with;30%
of TDP-43 inclusions in human ALS tissue (Liu-Yesucevitz et al.,
2010; Bentmann et al., 2012; McGurk et al., 2014).

An overarching hypothesis has been that stress-granule local-
ization of TDP-43 seeds the protein aggregation observed in
ALS. Stress granules and LLPS condensates are highly concen-
trated sources of protein, which is a biophysical property that
promotes LLPS. Thus, by increasing local protein concentration,
LLPS provides an environment that can promote phase transi-
tion events that lead to the formation of protein oligomers with
solid-like characteristics (Kato et al., 2012; Molliex et al., 2015;
Murakami et al., 2015; Patel et al., 2015; Guo et al., 2018). In
in vitro experiments, solid protein oligomerization within pro-
tein condensates can also be promoted by increasing the time the
proteins are in the protein droplet, by repeated forming and dis-
solving the protein droplets, and by introducing disease-associ-
ated mutations to the protein (Lin et al., 2015; Molliex et al.,
2015; Patel et al., 2015). In line with these in vitro data, cells
exposed to chronic stress form stress granules and persistent
TDP-43 aggregates (McGurk et al., 2018b; Gasset-Rosa et al.,
2019; Fernandes et al., 2020), suggesting that chronic stress and/
or stress-granule localization leads to disease-like aggregation of
TDP-43. However, under short-term stress, stress granules in-
hibit the formation of disease-like aggregates of TDP-43 and pro-
mote the solubility and dissolution of the protein after the
removal of stress (McGurk et al., 2018b; Chen and Cohen, 2019;
Gasset-Rosa et al., 2019; Mann et al., 2019; Fernandes et al.,
2020). Thus, under short-term stress, the cell controls both the
accumulation and dissolution of TDP-43 aggregates, but under
continued stress and maintenance of a condensed phase, TDP-
43 transitions into disease-like aggregates.

Elucidation of the LLPS-associated dynamics of membrane-
less organelles and disease-causing proteins may explain the pa-
thology observed in ALS and other neurodegenerative diseases.
However, whether protein aggregation causes dysfunction and
clinical symptoms is unknown. Data from animal models suggest
that targeting pathways that promote LLPS and stress granule bio-
genesis is therapeutic (Elden et al., 2010; Kim et al., 2014; Becker
et al., 2017; Guo et al., 2018; McGurk et al., 2018c; Zhang et al.,
2018; Duan et al., 2019; Fernandes et al., 2020). Thus, studying the
mechanisms of LLPS is directing us toward pathways with thera-
peutic potential for incurable diseases, such as ALS.

Concluding remarks
In conclusion, LLPS is emerging as a key biological phenomenon
that mediates several aspects of the basic organization and proper
functions of cells in general, and neurons in particular. It will be
interesting to see where the field of LLPS will take us in the next
few years. We anticipate that combined the technological
advancements in super-resolution microscopy and other imag-
ing techniques, we will be able to fill the gaps between in vitro
studies and in vivo conditions. Further advancements in our
understanding of this phenomenon will also allow us to design
new therapeutic approaches against neurodegenerative diseases.
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